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Abstract

Stochastic resonance has seen wide application in the physical sciences as a tool to understand weak signal amplification

by noise. However, this apparently counter-intuitive phenomenon does not appear to have been exploited as a tool to

enhance vibrational energy harvesting. In this note we demonstrate that by adding periodic forcing to a vibrationally

excited energy harvesting mechanism, the power available from the device is apparently enhanced over a mechanism

without periodic forcing. In order to illustrate this novel effect, a conceptually simple, but plausible model of such a device

is proposed to explore the use of stochastic resonance to enhance vibrational energy harvesting.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Stochastic resonance is an intriguing and counter intuitive phenomenon. First proposed by Benzi et al. [1] in
the early 1980s, it was devised as a mechanism to explain the means by which weak forcing of solar insolation
can produce the dramatic swings in the Earth’s climate seen in periodic ice ages. Subsequently, a significant
body of work has explored applications in a diverse range of fields such neurophysiology [2], quantum systems
[3] and signal processing [4]. Experimental work has also demonstrated stochastic resonance in a range of
physical systems such as an ac-driven Schmitt trigger [5], a bistable ring laser [6] and more recently MEMS-
scale cantilevered beams [7]. On-going work is continuing to exploit stochastic resonance in climate science,
human cognition and the development of nano-scale devices.

The underlying mechanism of stochastic resonance requires a bi-stable nonlinear system which is excited by
noise, such as a double well potential [1]. If the system is trapped in either potential well, the effect of noise is
merely to excite the dynamics locally, with the probability of a transition between the potential wells
determined by the so-called Kramers rate [8]. For a large potential barrier between the two potential wells this
probability is clearly small. However, if the dynamics are now forced such that the height of the potential
barrier oscillates, then the transition probability is also forced. If this forcing is matched to the mean time
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between transitions (inverse Kramers rate), then stochastic resonance can occur. In stochastic resonance the
system is driven across the weakened potential barrier by noise with the result that a large amplitude response
occurs. This has the counterintuitive effect that the addition of noise to a weak periodic signal can amplify the
signal with a greatly enhanced signal-to-noise ratio. It is this amplification effect which has led to a diverse
range of applications of stochastic resonance and which we will exploit to enhance vibrational energy
harvesting.

Cartmell has shown that combined excitation and parametric forcing can modify energy flows in a
deterministic oscillator [9]. In addition, although early work on stochastic resonance focused on bi-stable
systems excited by white noise, more recent work has shown that similar effects are possible in systems where
stochastic noise is replaced with high-frequency excitation [10]. This analogous phenomenon occurs when the
excitation frequency is well separated from the forcing frequency of the potential well. Since machine vibration
is never truly stochastic, this provides a mechanism to link stochastic resonance to real mechanical devices,
such as those used for vibrational energy harvesting.

Energy harvesting has emerged as an important new topic with the goal of fabricating devices that can
generate electrical power by exploiting ambient vibrational energy [11] or thermal gradients [12]. These
mechanisms are seen as a practical means of powering remote wireless sensors in automotive or aerospace
applications, without the need for a battery or wiring harness. Typically, a cantilevered beam with a
piezoelectric strip is used to transform vibrational energy into electrical energy through damping [13]. For
small displacements of the beam, peak power generation in the mechanism will occur when the natural
frequency of the beam is tuned to the peak of the vibration noise spectrum. Here, we propose to exploit the
phenomenon of stochastic resonance to enhance the performance of such devices. In particular, if the
cantilevered beam is instead clamped at both ends it forms a simple bi-stable mechanical system with a double
potential well. If the beam is then forced (periodically compressed and relaxed) so as to modulate the height of
the potential barrier while being excited by noise, stochastic resonance can occur. It is proposed that
additional energy can then be extracted from the ambient vibration noise spectrum, leading to enhanced
power generation over a conventional linear oscillator. We expect further exploitation of stochastic resonance
in a range of mechanical devices.

2. Energy harvesting device

2.1. Free vibration of a clamped– clamped beam

In order to explore the application of stochastic resonance to vibrational energy harvesting, a concep-
tually simple mechanism will now be investigated. We will consider a beam under a modest compressive
load which can buckle into one of two symmetric equilibrium states. The beam is supported by a base of
negligible mass. The essential behaviour of the beam can be captured by representing it as a single
lumped mass m with two linear springs of stiffness k and natural length l, as shown in Fig. 1. Dissipation in the
beam will be modelled by a single linear damper c. Using this lumped mass model, the displacement of the

mass will be defined by x from the datum A2A0 (such that xp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � d2

p
Þ, while the springs are separated

by 2d, such that dol. It will initially be assumed that the distance A2A0 is fixed. Following the analysis of
Roundy [14], if the base is excited by a displacement X, it can be shown that the dynamics of the problem are
described by

m €xþ c _xþ 2kx 1�
lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ d2
p !

¼ �m €X (1)

where the new nonlinear term in Eq. (1) represents the dynamics of the spring–mass system. This nonlinear
term can then be expanded by assuming x=d51. Although this restriction will not be used later, the resulting
equation of motion captures the full nonlinearity of the problem. It can then be shown that

m €xþ c _x� 2k
l

d
� 1

� �
xþ

kl

d3
x3 þ � � � ¼ �m €X (2)
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Fig. 1. One degree-of-freedom beam model comprising a single lumped mass m with spring constant k and displacement xðtÞ from

(unstable) equilibrium driving a damper with damping coefficient c. The device experiences base excitation with displacement X ðtÞ and the

distance A2A0 is modulated at frequency o.
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A non-dimensional position coordinate x ¼
ffiffiffiffiffiffiffiffiffi
l=d3

q
x and non-dimensional time t ¼ t=

ffiffiffiffiffiffiffiffiffi
m=k

p
can be defined.

The qualitative nonlinear model for the beam is therefore defined by

x00 þ cx0 � mxþ x3 ¼ QðtÞ (3)

where ð0Þ indicates differentiation with respect to t. The free parameter m ¼ 2ðl=d � 1Þ is used as a measure of

the compressive load acting on the beam, while c ¼ c=
ffiffiffiffiffiffiffi
km
p

and QðtÞ ¼ �ðm=kÞ

ffiffiffiffiffiffiffiffiffi
l=d3

q
€X .

In order to proceed, we will firstly consider an undamped, unexcited system with c ¼ 0 and Q ¼ 0. Clearly,
if the beam is in tension ðlodÞ then mo0 while if the beam is in compression ðl4dÞ then m40 with the critical
buckling load corresponding to m ¼ 0. It can be seen that for mo0. Eq. (3) admits a single real equilibrium
solution ðx00 ¼ 0Þ at ex0 ¼ 0 corresponding to an undeflected beam in tension. For m40, Eq. (3) admits
3 equilibria defined as ex0 ¼ 0, ex1 ¼ þ ffiffiffi

m
p

and ex2 ¼ � ffiffiffi
m
p

, corresponding to a symmetric buckled configuration.
A supercritical bifurcation then occurs when m changes sign [15].

The change to the qualitative behaviour of the system detailed above can be seen through the use of an
effective potential for the problem V ðxÞ such that x00 ¼ �qV ðxÞ=qx. The potential can then be defined as

V ðxÞ ¼ �1
2
mx2 þ 1

4
x4 (4)

The stability properties of the equilibria defined above can be determined from the turning points of V ðxÞ, as
can be seen in Fig. 2. For mo0 the single equilibrium point at ex0 is stable with q2V ðxÞ=qx240, while for m40 it
becomes unstable with q2V ðxÞ=qx2o0 and the equilibria at ex1 and ex2 are stable with q2V ðxÞ=qx240. It is clear
that ex0 becomes unstable when the two new (stable) equilibria ex1 and ex2 appear at the supercritical bifurcation.
It will be assumed that the beam is initially in a post-buckled state and is in one of the two symmetric
equilibria ex1 or ex2 corresponding to one of the two available potential wells.
2.2. Forced vibration of a clamped– clamped beam

The simple model of the clamped–clamped beam will now be extended to include the excitation and linear
damping terms discussed above. It will be assumed that the parameter m can be forced at frequency o and with
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Fig. 2. Effective potential V ðxÞ for a 1 degree-of-freedom beam model. Single equilibrium ex0 for mo0 with two new equilibria ex1 and ex2
appearing after the supercritical bifurcation at m ¼ 0.
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amplitude Z. This implies that the beam is compressed and relaxed in an oscillatory manner so that the distance
A2A0 is now time varying. Such forcing could be achieved with an electromechanical actuator at the support
points A and A0, as indicated in Fig. 1. This forcing will modulate the height of the potential barrier to allow
stochastic resonance. It will also be assumed that the beam is excited by external noise QðtÞ, the properties of
which will be discussed later. The dynamics of the mechanism are now parametrically forced and are defined by

x00 þ cx0 � mð1� Z cosðotÞÞxþ x3 ¼ QðtÞ (5)

It can be seen that there is now an external input of energy to the mechanism from the excitation QðtÞ which is
then dissipated by the linear damping cx0. Importantly, this flow of energy from excitation to the response of
the beam is modulated by the parametric forcing of the beam at frequency o [9]. The effective potential of the
problem can now be defined as a time-dependent, oscillatory function given by

V ðx; tÞ ¼ �1
2
mð1� Z cosðotÞÞx2 þ 1

4
x4 (6)

The forcing of the potential is shown in Fig. 3 over a half cycle. It can be seen that the height of the potential
barrier between the two stable equilibria of the system is modulated. As will be seen, when properly tuned
through the forcing frequency o, this modulation will allow the excitation QðtÞ to drive the mechanism between
the two potential wells in a stochastic resonance. The significantly enhanced response of the beam will then
provide greater power to be dissipated by the damper and exploited for energy harvesting.

2.3. Enhanced vibrational energy harvesting

In order to assess the use of stochastic resonance for vibrational energy harvesting, the total power
dissipated by the damper will now be investigated. In principle, this power is available for energy harvesting.
The details of the damper are not considered, although it may represent an electromechanical device [11] or a
piezoelectric strip [13] (recalling that the spring–mass system represents a continuous beam). We note that
power is required to drive the oscillatory forcing of the beam at frequency o. This will be subtracted from the
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Fig. 3. Forcing of the double potential well with m ¼ 1 and forcing amplitude Z ¼ 0:7.
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total power available. We note that traditionally stochastic resonance adds noise to a periodic signal, whereas
our system is stochastically excited and then periodically forced.

From Eq. (5) it can be seen that

x0x00 � mxx0 þ x3x0 ¼ �cx02 � mZ cosðotÞxx0 þ x0QðtÞ (7)

which can be written as

d

dt
1

2
x02 �

m
2
x2 þ

1

4
x4

� �
¼ �cx02 � mZ cosðotÞxx0 þ x0QðtÞ (8)

and is clearly a statement of conservation of power [11]. We interpret Eq. (8) as the balance between the
instantaneous power input due to excitation QðtÞ, balanced by the rate of change of the kinetic energy and
potential energy of the mechanism and the linear dissipation. Therefore, identifying the total energy of the
system as E ¼ x02=2þ V ðxÞ, where the effective potential energy is defined by Eq. (4), it can be seen that

E 0 ¼ �cx02 � mZ cosðotÞxx0 þ x0QðtÞ (9)

We now propose from Eq. (9) that the instantaneous power P available for energy harvesting is given by

P ¼ cx02 � dmZ cosðotÞxx0 (10)

The first term, cx02, is the usual linear dissipation due to damping. This is assumed to be harvested by the
damper attached to the beam. It is proposed that the second term, dmZ cosðotÞxx0, represents the rate at which
work is done in forcing the beam at frequency o. However, this term can be of either sign corresponding to
energy input to compress the beam and energy release when the beam relaxes. In order to provide a
conservative estimate of the net power generated, we ensure that the term only represents a sink of energy and
so we define

d ¼
1 if cosðotÞxx0X0

0 if cosðotÞxx0o0

(
(11)
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Therefore, the power available for energy harvesting is reduced due to the power required to force the beam at
frequency o.

In order to simulate stochastic resonance the excitation QðtÞ will now be defined. Rather than pure white
noise, a number of harmonics are summed and a strong white noise component added. The harmonics are
postulated to represent the noise emitted from a single cylinder engine rotating with angular velocity O and
with crank length to con-rod length ratio 1=3 [16]. White noise is then added to this periodic signal to represent
the un-modelled high-frequency dynamics of the engine so that the excitation is defined as

QðtÞ ¼ 1
2
rðtÞ þ sinðOtÞ þ 1

3
sinð2OtÞ � 0:00926 sinð4OtÞ þ 0:0003 sinð6OtÞ (12)

where the white noise rðtÞ has zero mean and unit variance and the coefficients represent an approximation to
the periodic vibration spectrum [16].

We now consider the response of the mechanism with and without periodic forcing of the beam. We select
m ¼ 1 and Z ¼ 0:7, corresponding to the springs being compressed to approximately 65% of their natural
length and then modulated such that the distance A2A0 changes by approximately 15% with frequency o.
With zero forcing ðZ ¼ 0Þ, the mechanism is excited in a single potential well with small amplitude vibration, as
shown in Fig. 4. However, with the addition of periodic forcing ðZa0Þ the mechanism fluctuates between the
two potential wells in a state of stochastic resonance with large amplitude displacements, again shown in
Fig. 4. In stochastic resonance the mechanism is highly excited such that the linear dissipation cx02 is greatly
enhanced. However, the additional term dmZ cosðotÞxx0 in Eq. (10) will reduce this improvement in power
output due to the work done in forcing the beam. The net integrated energy output from both cases is shown
in Fig. 4. It can be seen that the forced mechanism in stochastic resonance apparently delivers significantly
more energy from the excitation QðtÞ than the unforced mechanism. The forcing frequency o required for
stochastic resonance can be estimated from the Kramer’s rate, the probability of transition between the
potential wells [8].
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Fig. 4. Tuned system in stochastic resonance with o ¼ 1:2: (a) response with forcing ðZ ¼ 0:7Þ, (b) response without forcing ðZ ¼ 0Þ, (c)

external noise QðtÞ with hrðtÞi ¼ 0 and (d) energy available from the mechanism with forcing (solid line) and without forcing (dashed line)

with damping c ¼ 0:5.
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Fig. 5. Un-tuned system far from stochastic resonance with o ¼ 0:5: (a) response with forcing ðZ ¼ 0:7Þ, (b) response without forcing

ðZ ¼ 0), (c) external noise QðtÞ and hrðtÞi ¼ 0 and (d) energy available from the mechanism with forcing (solid line) and without forcing

(dashed line) with damping c ¼ 0:5.
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The response of the mechanism away from stochastic resonance is shown in Fig. 5. In this case the
mechanism is unable to transition between the two potential wells. It can be seen that the integrated energy
output is now greater for the unforced mechanism, due to the work done in forcing the beam. Finally, the
power available from the forced and unforced mechanisms is shown in Fig. 6. It can be seen that the forced
mechanism dissipates significantly more power than the unforced mechanism, but that some of this power is
required to force the beam. However, the net power available and integrated energy output is greater at
stochastic resonance. Having introduced the application of stochastic resonance to vibrational energy
harvesting, it is clear that other mechanical systems could be shown to be capable of exhibiting this
phenomena.

3. Conclusions

The concept of stochastic resonance has been investigated as an effective new means of enhancing
vibrational energy harvesting. Using a simple conceptual model of an energy harvesting mechanism it has been
shown that periodic forcing can apparently be used to increase the mechanical energy available for extraction
through energy harvesting. While a device using stochastic resonance will be mechanically more complex than
a conventional device, and will be less efficient than the ideal mechanism investigated here, it is believed that
the apparent enhancement in energy harvesting may be significant in practice and will be pursued through
further analytical and experimental investigation.
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